Tag Archives: xác suât

Think Stats: Phân tích dữ liệu theo hình thức khám phá bằng Python

Phiên bản 2014, tác giả Allen B. Downey.

Nguyên bản HTML tiếng Anh: http://greenteapress.com/thinkstats2/html/index.html

Cấp phép để sao chép, phân phối và/hoặc sửa đổi văn bản này theo các điều khoản của Giấy Phép Creative Commons Ghi công-Phi thương mại-Chia sẻ tương tự 4.0 Quốc tế, được đăng ở http://creativecommons.org/licenses/by-nc-sa/4.0/

 Nội dung các chương

Chương 1: Phân tích dữ liệu khám phá

Chương 2: Phân bố xác suất

Chương 3: Hàm khối xác suất

Chương 4: Hàm phân bố lũy tích

Chương 5: Mô hình hóa phân bố

Chương 6 Hàm mật độ xác suất

Chương 7: Mối quan hệ giữa các biến

Chương 8: Ước lượng

Chương 9: Kiểm định giả thiết

Chương 10: Bình phương nhỏ nhất tuyến tính

Chương 11: Hồi quy

Chương 12: Phân tích chuỗi thời gian

Chương 13: Phân tích trường tồn

Chương 14: Các  phương pháp giải tích. Tiếp tục đọc

Advertisements

11 phản hồi

Filed under Think Stats, Tin học

2. Phát sinh các số (giả) ngẫu nhiên

Trở về Mục lục cuốn sách

Mã nguồn người dịch mới upload: randomness.zip

Nhiều trường hợp mô phỏng trong khoa học, kinh tế hay khoa học xã hội cần đến biến ngẫu nhiên. Thường thì mô hình tự nó bộc lộ những tham số ngẫu nhiên mà vẫn được giữ cố định trong suốt quá trình mô phỏng; ta nói đến quenched disorder (một dạng phi trật tự). Một ví dụ nổi tiếng trong lĩnh vực vật lý thể đặc là thủy tinh spin, vốn là hợp kim trộn ngẫu nhiên các vật liệu từ tính và phi từ tính. Trong trường hợp này, khi thực hiện những mô phỏng đối với hệ thống nhỏ, để thu được đại lượng vật lý cần thiết, ta phải tiến hành lấy trung bình các biểu hiện nhiễu loạn khoác nhau. Mỗi biểu hiện nhiễu loạn bao gồm các vị trí của hạt từ tính và phi từ tính được chọn một cách ngẫu nhiên. Để phát sinh ra biểu hiện nhiễu loạn phục vụ mô phỏng, ta cần có các số ngẫu nhiên. Nhưng ngay cả khi hệ được mô phỏng bản thân không có tính ngẫu nhiên thì thuật toán dùng để tính lại thường yêu cầu số ngẫu nhiên, chẳng hạn để lập nên một tập hợp thống kê (ensemble) chứa những nhiệt độ hữu hạn, hoặc khi dùng đến thuật toán ngẫu nhiên. Tóm lại, ứng dụng của số ngẫu nhiên trong mô phỏng điện toán rất phổ biến. Trong mục này, chúng tôi trình bày sự phát sinh số ngẫu nhiên. Trước hết là phần giải thích cách phát sinh chúng bằng mọi cách trên máy tính. Sau đó, các phương pháp khác nhau sẽ được trình bày nhằm mục đích thu được số tuân theo một dạng phân bố mong muốn: phương pháp nghịch đảo, phương pháp loại bỏ, và phương pháp Box-Müller. Các thông tin đầy đủ về những phương pháp này và tương tự có thể được tìm thấy trong các tài liệu tham khảo: [Morgan (1984); Devroye (1986); Press và nnk. (1995)]. Trong mục này tôi coi rằng bạn đã quen thuộc với những khái niệm cơ bản về lý thuyết xác suất và thống kê, như đã trình bày trong Mục 1. Tiếp tục đọc

Bạn nghĩ gì về bài viết này?

Filed under Ngẫu nhiên và mô phỏng